Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 180(7): 879-893, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34378790

RESUMO

Despite the increasing impact of opioid use disorders on society, there is a disturbing lack of effective medications for their clinical management. An interesting innovative strategy to treat these disorders consists in the protection of endogenous opioid peptides to activate opioid receptors, avoiding the classical opioid-like side effects. Dual enkephalinase inhibitors (DENKIs) physiologically activate the endogenous opioid system by inhibiting the enzymes responsible for the breakdown of enkephalins, protecting endogenous enkephalins and increasing their half-lives and physiological actions. The activation of opioid receptors by the increased enkephalin levels, and their well-demonstrated safety, suggests that DENKIs could represent a novel analgesic therapy and a possible effective treatment for acute opioid withdrawal, as well as a promising alternative to opioid substitution therapy minimizing side effects. This new pharmacological class of compounds could bring effective and safe medications avoiding the major limitations of exogenous opioids, representing a novel approach to overcome the problem of opioid use disorders. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.


Assuntos
Neprilisina , Transtornos Relacionados ao Uso de Opioides , Humanos , Analgésicos Opioides/farmacologia , Encefalinas/metabolismo , Encefalinas/farmacologia , Receptores Opioides , Receptores Opioides mu
2.
Int J Mol Sci ; 23(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36233233

RESUMO

Sigma-1 receptor (σ1R) ligands have been shown to be effective at relieving neuropathic and inflammatory pain, but have not yet been tested in experimental models of fibromyalgia. The objective of this study was to evaluate the effect of a σ1R antagonist (BD1063) compared to pregabalin. ICR-CD1 female mice were subjected to either six repeated injections of reserpine, to cause reserpine-induced myalgia (RIM6), or acidified saline intramuscular injections (ASI). In these two models, we evaluated the effect of BD1063 and pregabalin on thermal hypersensitivity, anxiety-like and depression-like behaviors, and on spinal cord gliosis. BD1063 exerted an antinociceptive effect on both reflexive (thermal hyperalgesia) and nonreflexive (anxiety- and depression-like) pain behaviors, and reduced spinal astroglial and microglial reactivity, following repeated treatment for 2 weeks. Interestingly, the effects of BD1063 were long-term, lasting several weeks after treatment discontinuation in both fibromyalgia-like models. Similar results were obtained with pregabalin, but the effects on pain behaviors lasted for a shorter length of time, and pregabalin did not significantly modulate spinal glial reactivity. The inhibitory and long-lasting effect of pharmacological blockade of σ1Rs on both sensory and affective dimensions of nociplastic-like pain and spinal cord gliosis in two experimental models of fibromyalgia support the application of this therapeutic strategy to treat fibromyalgia.


Assuntos
Analgésicos , Dor Crônica , Fibromialgia , Receptores sigma , Analgésicos/uso terapêutico , Animais , Dor Crônica/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Fibromialgia/tratamento farmacológico , Gliose , Hiperalgesia/tratamento farmacológico , Camundongos , Camundongos Endogâmicos ICR , Pregabalina/uso terapêutico , Receptores sigma/antagonistas & inibidores , Reserpina/efeitos adversos
3.
Sci Rep ; 12(1): 9719, 2022 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-35691979

RESUMO

Nociplastic pain arises from altered nociception despite no clear evidence of tissue or somatosensory system damage, and fibromyalgia syndrome can be highlighted as a prototype of this chronic pain subtype. Currently, there is a lack of effective treatments to alleviate both reflexive and nonreflexive pain responses associated with fibromyalgia condition, and suitable preclinical models are needed to assess new pharmacological strategies. In this context, although in recent years some remarkable animal models have been developed to mimic the main characteristics of human fibromyalgia, most of them show pain responses in the short term. Considering the chronicity of this condition, the present work aimed to develop two mouse models showing long-lasting reflexive and nonreflexive pain responses after several reserpine (RIM) or intramuscular acid saline solution (ASI) injections. To our knowledge, this is the first study showing that RIM6 and ASI mouse models show reflexive and nonreflexive responses up to 5-6 weeks, accompanied by either astro- or microgliosis in the spinal cord as pivotal physiopathology processes related to such condition development. In addition, acute treatment with pregabalin resulted in reflexive pain response alleviation in both the RIM6 and ASI models. Consequently, both may be considered suitable experimental models of fibromyalgia-like condition, especially RIM6.


Assuntos
Dor Crônica , Fibromialgia , Animais , Dor Crônica/tratamento farmacológico , Modelos Animais de Doenças , Fibromialgia/tratamento farmacológico , Camundongos , Pregabalina/farmacologia , Pregabalina/uso terapêutico , Reserpina/farmacologia
4.
Bio Protoc ; 12(5): e4348, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35592600

RESUMO

The search for safe and efficient chronic pain treatments is dampened by the lack of reliable models that faithfully reproduce current pharmacological treatments for chronic spontaneous pain in humans. Preclinical models often assess the antinociceptive efficacy of non-contingent pharmacological treatments evaluated in the short-term. Here, we provide a protocol of contingent operant self-medication in mice, which allows the estimation of spontaneous pain relief and drug abuse liability in models of persistent pain. This paradigm requires preliminary habituation and animal handling, followed by training of mice in operant conditioning boxes, to allow subsequent analgesic drug self-administration. After the initial acquisition of food-maintained operant behavior, a chronic pain sensitization is induced. Posterior intravenous jugular catheterization and coupling of operant conditioning boxes to perfusion pumps allow quantification of operant responding for intravenous drug self-administration. All mice show an initial operant drug self-administration behavior associated with the previous food-maintained operant training. This initial operant responding is extinguished after administration of ineffective treatments, but continues when the compounds have analgesic efficacy or intrinsic reinforcing properties. The identification of a significant drug self-administration selectively expressed in mice exposed to the chronic pain condition is indicative of analgesic drug effects, whereas persistent self-administration in control mice is indicative of abuse liability. The present protocol provides the behavioral and surgical procedures needed to assess spontaneous pain relief and potential for abuse of pharmacological treatments, through contingent analgesic self-medication in mice. Graphic abstract: Experimental design. Animals are subjected to a 5-day food self-administration protocol with a fixed ratio of reinforcement of 1 (FR1, 1 interaction with the active nose-poke causes the release of 1 reinforcer/infusion), to acquire the operant behavior. After this training, mice are subjected to the chronic pain or sham procedure, and four days later an intravenous (i.v.) catheterization is performed, to allow self-administration with the selected compound or its vehicle. Three days after the catheterization, animals start the drug/vehicle self-administration protocol at FR1. The patency of the catheter is evaluated with the thiopental test after the last self-administration session. Adapted from Bura et al. (2018).

5.
Neurosci Lett ; 664: 98-106, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29126777

RESUMO

Neuropathic pain (NP) is present in 40-to-50% of spinal cord injured patients. It tends to chronicity and correlates with lower quality-of-life. Moreover, the role of NP in the eventual exacerbation of anxiety- and depression-like behaviours during its development and chronification in genetically susceptible individuals remains unclear. Thus, although solely few animal models are available, new specific models are needed to complete the array of chances to assay new therapeutic strategies with the aim of treating chronic NT and its associated mood disorders. The present study was conceived to evaluate hyperalgesic responses and anxiety- and depression-like behaviours after graded photochemical spinal cord injury (SCI) up to chronic phase. BALB/c strain was used: it expresses a phenotype characterized by high innate anxiety levels, allowing to elucidate whether NP may exacerbate mood disorders at SCI chronic phase. After different photoinduction-times on exposed spinal cord, the mice developed a graded chronic hyperalgesia with minor to non-existent motor dysfunction. Behavioural data suggest that whilst hyperalgesia associated to SCI does not exacerbate BALB/c anxiety-like behaviours, it may result in depression-like behaviour at SCI chronic phase. Our study demonstrates that chronic central hyperalgesia may exacerbate despair-like behaviour at the SCI chronic phase in a mouse model of high anxiety-related behaviour. This implies that photochemical-SCI may be a suitable model to study the comorbidity between chronic NP and mood disorders.


Assuntos
Ansiedade/etiologia , Depressão/etiologia , Modelos Animais de Doenças , Hiperalgesia/psicologia , Neuralgia/psicologia , Animais , Comportamento Animal , Feminino , Hiperalgesia/etiologia , Camundongos , Camundongos Endogâmicos BALB C , Neuralgia/etiologia , Processos Fotoquímicos , Rosa Bengala/farmacologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/efeitos da radiação , Traumatismos da Medula Espinal/complicações
6.
Phytother Res ; 31(2): 340-344, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27896922

RESUMO

(-)-Epigallocatechin-3-gallate (EGCG) is a major polyphenol in green tea with beneficial effects on the neuropathic pain alleviation in animal models. Because chemokine fractalkine (CX3CL1) has been suggested as an important signal during neuropathic pain development, this study aimed to investigate whether CX3CL1 expression may be modulated by EGCG treatment reducing hyperalgesia in chronic constriction injured mice. To this end, Balb/c mice were subjected to a chronic constriction injury of sciatic nerve (CCI) and treated with EGCG or vehicle once a day during the first week following surgery. Thermal hyperalgesia was tested at 7 and 14 days post-surgery, and the expression of CX3CL1 and its mRNA were analyzed in spinal cord at the end of the experimental period. Results revealed that EGCG treatment significantly reduced thermal hyperalgesia in CCI-injured mice at short time, and this antihyperalgesic effect was associated with a down-regulation of CX3CL1 protein expression in the spinal cord. On the other hand, EGCG treatment did not affect the CX3CL1 transcription. Overall, our results suggest a new role of EGCG-treatment in an experimental model of neuropathic pain as a mediator of nociceptive signaling cross talk between neurons and glial cells in the dorsal horn of the spinal cord. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Catequina/análogos & derivados , Quimiocina CX3CL1/metabolismo , Hiperalgesia/tratamento farmacológico , Medula Espinal/metabolismo , Animais , Catequina/química , Quimiocina CX3CL1/genética , Feminino , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...